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Abstract

The growth rates of the longitudinal higher-order
impedance-driven beam modes have greatly increased
since the initial PEP-II design and commissioning. This
increase is attributed to the addition of 6 1.2MW RF sta-
tions with 8 accelerating cavities in the HER and 2 1.2MW
RF stations with 4 accelerating cavities in the LER, which
allowed operations at twice the design current and almost
four times the luminosity. As a result, the damping re-
quirements for the longitudinal feedback have greatly in-
creased since the design, and the feedback filters and con-
trol schemes have evolved during PEP-II operations.

In this paper, growth and damping rate data for the
higher-order mode (HOM) driven coupled-bunch modes
are presented from various PEP-II runs and are compared
with historical estimates during commissioning. The effect
of noise in the feedback processing channel is also studied.
Both the stability and performance limits of the system are
analyzed.

LONGITUDINAL INSTABILITIES

The PEP-II rings have exhibited coupled-bunch longi-
tudinal instabilities since commissioning. The longitudi-
nal instabilities in PEP-II are driven by two impedance
sources: cavity fundamental and cavity HOM. The LLRF
systems use direct and Comb loop feedback to reduce the
effective impedance of the cavity fundamental. To further
damp these instabilities two additional feedback systems
are used: the Low Group Delay Woofer (LGDW) and the
Longitudinal Feedback (LFB).

The band limited LGDW addresses the beam motion
from in-cavity low-order modes via a signal from a beam
pick-up and control paths through the RF stations [1], [2].
The cavity fundamental driven beam modes have been
studied and predictions for higher currents, including stud-
ies of different configurations have been presented [3], [4].

The LFB is a wideband bunch by bunch channel that ad-
dresses all modes via a digital control filter and broadband
longitudinal kickers. The LFB is needed to control insta-
bilities from the cavity HOM impedance. It is a Digital
Signal Processing (DSP) based flexible programmable sys-
tem that can run FIR or IIR filters. A block diagram of the
LFB system is shown in Figure 1.
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Figure 1: Longitudinal Feedback System.

This paper uses machine measurements in HER and
LER to quantify the HOM driven growth rates, quantify
the achieved performance of the broadband feedback, and
highlight the performance limits in the systems as con-
structed [5].

HOM-DRIVEN MODES: GROWTH AND
DAMPING RATES

During the PEP-II design and commissioning, the
impedance driving beam instabilities was estimated from
cavity measurements [6]. The impedance estimates al-
lowed calculations of the expected growth rates for the
HOM driven coupled-bunch modes, as shown in Figure 2
from [7]. The growth rates were calculated during commis-
sioning for the design parameters of 1 A and 20 cavities for
the HER and 2.25 A and 4 cavities for the LER. From this

Figure 2: Growth Rate Estimates from Impedance Mea-
surements for 1 A HER, 2.25 A LER.

figure one can see that there are two bands that excite insta-
bilities. The strongest is a 9 MHz wide band that is aliased
at around 105 MHz (mode 770) from the 238 MHz sam-
pling and drives roughly 65 beam modes. The second band



is a 7 MHz wide band that aliases at around 93 MHz (mode
683). These wideband, instability driving impedances do
not allow the use of narrowband feedback as employed
for the cavity fundamental driven modes (LGDW). Fur-
thermore, it is impossible to tune those impedances us-
ing adjustments in water temperature or cavity tuners. The
dominant impedance driving these instabilities is the cav-
ity HOM impedance, which is proportional to the number
of cavities. The HOM driven coupled-bunch beam growth
rates are proportional to the number of cavities and to the
beam current.

At nominal current both rings exhibit coupled-bunch in-
stabilities in the absence of the damping feedback systems.
Therefore, to measure the beam growth rates, we open the
LFB loop for a few milliseconds letting the unstable beam
modes grow, and then turn it back on to recapture the beam
[8], [9]. The time-domain data of the beam motion is trans-
formed to a modal domain and fit versus time. The complex
exponential fit provides an estimation of the modal growth
rates and oscillation frequencies. This process allows the
estimation of the fastest growing beam modes. Other tech-
niques are possible to measure slower growing modes [10].

The highest HOM beam growth rates and the corre-
sponding damping rates reported below are from a band
between mode 790 and 810. This is very close to mode
770 that was estimated from the cavity data. The data re-
ported are an average of the growth and damping rates over
this mode range and multiple measurements.

HER For the HER, the HOM driven coupled-bunch
modal growth rates are shown in Figure 3. Data points
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Figure 3: HER HOM driven coupled-bunch modal growth
rates for modes 790-810.

over 4 years of PEP-II operations are collected. The data
points show great linearity with current as expected. To
correctly compare these data points, the data from run 4
have been multiplied by 14/13 to account for the increase
in the number of cavities from 26 to 28. The black point
is a scaled version of the estimate based on the cavity data
described above. The growth rate has been appropriately
scaled by a factor of 28/20 for the increase of the number
of cavities from 20 to 28. Even though this point was es-
timated with limited resources more than ten years ago, it
shows great agreement with our data.

The damping rates for the higher currents are shown in
Figure 4. The LFB was configured with a 6 tap FIR fil-
ter centered around the 6 kHz synchrotron frequency. The
kicker and digital processing gains are constant for all the
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Figure 4: HER HOM driven coupled-bunch modal damp-
ing rates (growth plus feedback damping).

configurations shown. The filter gain is higher by a factor
of 1.4 for the red and magenta data points. Even though
the blue and green data points share the same configura-
tion, they show a big difference in the modal damping rates.
This difference is attributed to proper timing in the kicker.
Changes in the order of tens of ps in the kicker timing ex-
hibit huge improvement in the damping rates. Compar-
ing the blue with the red and magenta data points, there
is no improvement in the damping rate as expected with
the higher filter gain due to the timing shifts. For the well-
timed configurations, the damping margin was comparable
to the measured growth rates, satisfying our margin crite-
ria as defined in [4]. The lack of proportionality with cur-
rent shows that the system is saturated. It should be noted
though, that this saturation may be an artifact of the large
longitudinal oscillations caused by the opening of the loop
during our measurements. Even though we don’t see this
saturation during closed loop operation, it signifies that we
are approaching limited headroom from saturation limits
with this configuration.

LER For the LER, the HOM driven coupled-bunch
modal growth rates are shown in Fig 5. The data is from
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Figure 5: LER HOM driven coupled-bunch modal growth
rates for modes 790-810.

runs 6 and 7 and shows great linearity with current as ex-
pected. Similarly to the HER, the green point is from the
estimate based on the cavity data using the LER design pa-
rameters of 2 stations and 4 cavities. The growth rate has
been appropriately scaled by a factor of 2 for the increase
of the number of cavities from 4 to 8. Even though this
point was estimated with limited resources more than ten
years ago, it shows relative agreement with our data.

The corresponding modal damping rates are shown in
Figure 6. The LFB was configured with a 10 tap FIR fil-
ter centered around the 4 kHz synchrotron frequency. The
green and red data points share the same configuration. The
filter gain of the blue data point is lower by a factor of 0.7,
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Figure 6: HER HOM driven coupled-bunch modal damp-
ing rates (growth plus feedback damping).

whereas the filter gain for the cyan data is higher by a factor
of 1.4 from the green and red points. The red line is fitted
to the red data points. As described in the HER case, the
big difference between the red and green data points could
be attributed to timing issues. Further analysis of our data
will be conducted to determine whether there is a compo-
nent of saturation reducing the performance at the higher
currents. When the system is correctly timed, the damping
margin was comparable to the measured growth rates, sat-
isfying our margin criteria. The measurements agree with
the expected behavior of increased damping rates with in-
creasing gain and increasing current for the lower currents.
The lack of direct proportionality though, signifies that we
might be saturating our system.

Finally, Figure 7 shows the synchrotron frequencies for
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Figure 7: LER HOM driven coupled-bunch modal syn-
chrotron frequencies.

the modal growth and damping rates with current. The
two are in close agreement showing that the filter has been
properly tuned for the system to introduce pure damping
without affecting the modal oscillation frequency. The
same check was performed in the HER with equally suc-
cessful results.

FEEDBACK MODEL

To understand the effect of the system parameters in the
LFB stability and performance, an analysis based on a dy-
namic model is presented. The model includes the dynam-
ics of the multi-bunch beam, the loop filter, and the perturb-
ing noise sources that degrade the performance and stabil-
ity of the closed loop.

The multibunch system is a multiple-input, multiple-
output (MIMO) system. It can be represented in a sim-
plified version as depicted in Figure 8 [9], [11]. In absence
of the LFB system damping the beam presents some un-
stable modes, defining an open loop unstable system. In
addition, the system includes delays that in general limit
the maximum open loop gain. The two main noise sources
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Figure 8: Simplified LFB Block Diagram.

in the system can be grouped in the process noise np(t)
and the sensor noise ns(t). The process noise collects
mainly all the perturbations introduced by the RF stations,
kicker timing, etc. The sensor noise describes mainly
the collective effects of the noise in the receiver. This
noise has sources in the Master Oscillator, kicker ampli-
fiers, mixer, A/D sampler and cables connecting the BPM
to the receiver. In a simple way, this noise can be ana-
lyzed assuming that the Master Oscillator produces a sig-
nal vm(t) = [Vm + nm(t)]cos(ω0t + φm(t)), where Vm

is the amplitude of the sine wave, ω0 = 6 ωRF , nm(t) and
φm(t) are the amplitude and phase noise, respectively. The
Comb filter responds to the beam impulses measured by
the BPM with a finite duration signal vb(t, Ib) = [Vb(Ib) +
nb(t)]sin(ω0t + φ(t) + φb(t)), where Vb(Ib) is the am-
plitude of the oscillation, proportional to the bunch inten-
sity, φ(t) is the phase modulation in the beam produced by
the noise np(t) and the kicker signal, nb(t) and φb(t) are
the amplitude and phase noise respectively, induced in the
burst vb(t) by Johnson noise and pick-up.

The action of the mixer can be then simplified as
vb(t, Ib) vm(t) + nx(t), where nx(t) is noise of the
mixer at the output. Eliminating the upper sidebands at
the mixer output by filtering, the detected signal is ap-
proximately 0.5 [Vb(Ib)Vmsin(φ)] + nAsin(φ) + nφ +
nx, where nA = 0.5 [Vmnb + Vb(Ib)nm] and nφ =
0.5 Vb(Ib)Vmcos(φ)[φb + φm]. To complete the model of
the sensor noise ns(t), the ADC noise can be included giv-
ing ns(t) = nAsin(φ)+nφ+nADC+nx. It is important to
notice that since the Comb generator output signal is pro-
portional to the bunch intensity (beam current), the gain of
the phase detector is proportional to the beam current and
the noise of the receiver ns(t) increases also with the beam
intensity.

The beam dynamics of each bunch are modeled as a
discrete harmonic oscillator driven periodically (6Trev =
44.1µsec.) by 6 equally spaced impulses with equal am-
plitude. This represents the effect of kicking individually
each bunch at the revolution frequency by a system that
has a downsampling factor of 6. Additionally, the destabi-
lizing effect of the cavity HOM impedance is included in
this model.

The set of transfer functions representing the ratio be-
tween the individual kicker signals Vk(t) and the corre-
sponding error signal ε(t) is defined mainly by the loop
filter transfer function (FIR or IIR filters). This process-
ing acts individually on the error signal generated by each



bunch and generates a control signal Vk(t) that kicks the
same bunch a few turns later.

Mathematically, the system depicted in Fig. 8 can be
transformed into a modal domain using the transforma-
tion T , where the (m, l) element is defined by T (m, l) =

e−j2π ml

N . One advantage of the representation of the sys-
tem in the modal frame is that the parameters defining the
beam dynamic model for the unstable modes can be easily
estimated form the growth rate measurements presented in
the previous Section. Additionally, for the bank filter struc-
ture used in the LFB, where each filter processes the signal
of an individual bunch, the transfer function of the filter is
invariant with respect to the transformation.

The filter bank in the LFB is designed to stabilize the
multibunch beam dynamics. There is a set of equal filters
which stabilize the most unstable beam mode, and con-
sequently all other beam modes. The design of the LER
LFB loop filter follows. At Ib = 2250mA, from Figs. 5
and 7, the eigenvalues of the dominant unstable mode are
Λ = (+0.3 ± j 2π 4.070) ms−1. The transfer function of
the beam for that particular mode is shown in Fig. 9. For
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Figure 9: Beam Transfer Function - Most unstable mode.
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Figure 10: 10-Tap Loop Filter magnitude Transfer Func-
tion.

this system, a 10-tap FIR filter was designed. Its magnitude
transfer function is depicted in Fig. 10.

When operating in closed loop, the eigenvalues of the
composite system can be analyzed in the complex plane
based on the Z-domain root locus analysis. Fig. 11 depicts
the root locus for this particular system for open loop gains
ranging from 0 to 3. Black squares show the location of
the open loop eigenvalues of the composite system, as de-
fined by the modal beam unstable eigenvalues and multi-
ple eigenvalues defined by both the system and filter de-
lays. The circles represent the zeros of the system defined
mainly by the zeros of the filter. It is possible to evalu-
ate the location of the closed loop eigenvalues for different
gains for this particular beam mode. From the zoomed part
in Figure 11 it is possible to observe that there is a min-
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Figure 11: Root Locus.

imum gain to stabilize that particular beam mode, setting
the closed-loop eigenvalues over the unity circle (open loop
gain = 0.2). Additional gain is necessary to set the closed-
loop eigenvalues to the red circle in the zoomed locus at
Λ = (−0.6 ± j 2π 4.070) ms−1 (gain 0.5). This condi-
tion corresponds to Fig.8. For open loop gain greater than
3 one observes that the system is unstable.

NOISE FLOOR MEASUREMENTS

In order to quantify the effect of the noise sources in the
LFB system in both PEP-II rings, several noise measure-
ment were performed using the built-in data acquisition
system of the LFB. The downsampled signal digitized at
238 Msamples/sec by the ADC is recorded for offline anal-
ysis. This corresponds to the error signal ε(t) depicted in
Fig. 8. The acquired signal is post-processed to calculate
the noise spectrum. We estimate the power spectrum bunch
by bunch and a quadrature average provides the equivalent
noise spectrum of mode 0 in the modal domain.

To analyze the impact of the different noise sources,
measurements were conducted in several configurations.
Terminating the ADC input with 50 Ohms provides a mea-
sure of nADC(t) – the quantizing noise in the A/D and
the noise in the internal sampler (as well as any systematic
clock noise present in the processing). Turning off the gain
in the Comb path at 3 GHz measures the noise contribu-
tion from the baseband channel plus the noise contribution
through the mixer and Master Oscillator. Finally, measur-
ing the system in the nominal channel configuration but in
the absence of beam quantifies the sensor noise ns(t) – the
noise contribution from the whole RF path and processing
channel (including any coherent pickup in cables, BPM,
etc). It is important to notice that the noise source ns(t)
defined in our model includes noise terms that are ampli-
fied by the amplitude of the Comb generator signal Vb(Ib).
The other two measurement mentioned above cannot quan-
tify completely these noise terms since Vb(Ib) ' 0 in these
cases.

Measuring the noise of the system with beam quantifies
the impact of both noise sources ns(t) and np(t) in Figure
8. In closed loop the effect of these sources in the ADC is
now affected by the transfer functions of the LFB system.
These transfer functions will filter differently the perturba-
tions due to the receiver noise ns(t) and the process noise
np(t).



LER noise measurements Figure 12 shows the noise
levels for the four cases described above. Label ’A/D’
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Figure 12: LER noise measurements.

identify the measurement of nADC , ’mixer’ represents the
case with the Comb gain turned off, ’BPM (no beam)’
shows ns, and ’BPM (3150 mA)’ indicates the closed loop
case with beam present. The measurements exhibit the ex-
pected order of noise power magnitude. For the LER, the
noise in rms equivalent counts at the output of the ADC
is approximately 0.66. To show the non-ideality and ad-
ditional effects in the implemented A/D converter, a per-
fect quantizer, would have 0.32 rms counts of quantization
noise. It is important to observe that the beam noise is
dominant and much greater than the other measurements.
Part of the noise is amplified by the system around the syn-
chrotron frequency at 4.07 kHz. The noise spectrum with
beam shows large noise interference at 720 Hz and 1440
Hz, which correspond to the RF klystron High Voltage
power supply ripple. Again, since in the presence of beam
we have almost 2 rms counts of noise, increasing the num-
ber of bits in the A/D would have no effect on the system
noise. A 6 bit A/D would still have a noise level compara-
ble to the beam noise. To improve the system closed loop
rms noise floor we either have to improve our kicker ampli-
fiers or to reduce the RF station noise (that drives the beam
noise spectrum at low frequencies) through a narrower LFB
filter or through other station improvements.

HER noise measurements Figure 13 shows measure-
ments for the HER, exhibiting the same characteristics as
the LER. We again see how the RF station noise amplified
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Figure 13: HER: Mixer, A/D downsampler and BPM at
1700mA.

through the beam dominates our system. In the HER case
the synchrotron frequency is close to 6 kHz as can be in-
ferred from the spectrum.

CONCLUSIONS
The LFB system was designed for much lower currents.

Its programmable design allowed operations with much
larger growth rates. Even though the system still had suffi-
cient gain margin, the noise coupled to the beam from the
RF station was very close to saturating the LFB at the high-
est beam currents. To operate at even higher currents, ad-
ditional kicker power or improvements in the LLRF would
have been necessary. Another important limitation was the
kickers timing. We see that timing shifts in the ps level re-
duced the system gain – and thus the stability and margin –
substantially.
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