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Abstract
Lasers are increasingly being employed in particle beam

diagnostics. Laser-based techniques are attractive because
they are essentially non-invasive to the beam under test
and can not be destroyed by it. They also have the po-
tential to be extremely fast. Uses include transverse beam
profile measurement at electron machines using the Comp-
ton effect and at proton machines using laser-ionization of
H- beams. An introduction is provided to Gaussian beam
propagation and how this affects the laser properties and fi-
nal focus optics needed for the various applications. Recent
applications and results from ongoing research projects
will be reviewed, with particular emphasis on the “laser-
wire” systems recently employed at the PETRA and ATF
machines. Future possibilities will be discussed, including
higher order laser modes and interferometric techniques.

INTRODUCTION
Future electron machines will need accurate determina-

tion and monitoring of their transverse phase space in or-
der to meet their challenging performance specifications.
A detailed analysis of the issues and challenges involved in
such measurements are presented in Ref. [1], with particu-
lar reference to the International Linear Collider (ILC) [2];
a brief summary of this work is presented below in order to
motivate the challenges of the laser and optics prestented
later.

The Laser-Wire (LW) is a key beam diagnostics, which
is useful for beam profiles ranging from several tens of
microns, down to the micron scale. Smaller beam pro-
files have been measured using laser interferometric tech-
niques [3, 4] whereas traditional solid wires or screens can
be used for larger profiles (although they are disruptive
to the electron beams). Very challenging, low f-number,
laser optics are necessary for the LW in order to achieve
the required small laser spot-sizes and the subsequent per-
formance is evaluated numerically and described in below.
The laser systems necessary to power the LW are also very
challenging and the necessary specifications are next de-
rived and discussed.

TRANSVERSE EMITTANCE
MEASUREMENT

The International Linear Collider (ILC) has demanding
emittance goals that will need to be measured accurately in
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order to maximise the machine performance; the parame-
ters of the ILC [2] are presented in Tab. 1, which provides
the context for the requirements on measurement beam spot
sizes and scanning speeds, discussed below.

Table 1: Nominal ILC Parameters
Beam energy E 250(500) GeV
Norm. horiz. emittance γεx 10−5m rad
Norm. vert. emittance γεy 4 · 10−8 m rad
Train repetition rate f 5 Hz
Num. bunches per train Ntrain 2625
Inter-bunch spacing (ns) 369
Bunch length Lb 300 µm
Num. electrons per bunch Ne 2 × 1010

Beam Phase Space
The phase-space of a general Gaussian particle beam can

be described by four-dimensional (4d) matrix:
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The standard approach to reconstructing the 4d coupled
beam matrix with the least-squares fit method is presented
in Ref [5]. At a scanner location in the beam-line it is pos-
sible to measure three values,

〈

x2
〉

,
〈

y2
〉

and 〈xy〉, with
the help of a horizontal (x), a vertical (y), and a tilted (u)
wire scanner, as illustrated in Fig. 1, where the tilt-scanning
angle, φ, is also defined.

The optimal value for φ is given by

φ0 = tan−1

(

σx

σy

)

. (2)

and typical values of interest to the ILC beam delivery sys-
tem (BDS) are presented in Tab. 2.

The ten independent entries of Eq. 1 can be obtained ei-
ther by changing the optics in a controlled manner at the
wire location [6, 5, 7] or by locating the wires at differ-
ent positions in the beam-line. The latter technique will
be relevant for routine fast-scanning operation at the ILC.
Here it will be assumed that six laser-wire scanning sta-
tions are located at optimal locations in the BDS and that
each laser-wire station measures x,y and u with the same
relative measurement error. The emittance can then be in-
ferred by inverting the relations between the transverse spot



Figure 1: Bunch with horizontal-vertical coupling, such
that its major axis does not lie along the horizontal. In
addition to vertical and horizontal scans, a scan of the u-
axis is necessary, where u is at an angle φ to the vertical
as shown.

Table 2: The relevant measurables for emittance measure-
ment under the approximation 〈xy〉 ' 0 for a set of elec-
tron beam sizes of interest at the ILC for the given beam
energies Eb.

Eb σx σy φ0 σu σv

GeV µm µm deg µm µm
500 9 1.4 81.2 1.95 8.89
500 15 1.4 84.7 1.97 14.9
250 14 2 81.8 2.8 13.8
250 20 1.8 84.8 2.53 19.9

sizes as given by the R-matrices relating the beam twiss pa-
rameters at each location. This may lead to an unphysical
result (a non-positive beam matrix) when the measurement
is sufficiently noisy. A typical dependency of the fraction
of non-positive matrices on the relative measurement error
is shown in Fig. 2, where it can be seen that the relative
error should be kept below about 10% if significant recon-
struction inefficiency is to be avoided.

The quality of emittance reconstruction by performing
this technique is shown in Fig 3, which motivates the need
for LW systems that can measure beam spotsizes to a few
percent (or better). Methods for achieving such accuracies
will now be discussed.

GAUSSIAN BEAM OPTICS
Paraxial Approximation

Maxwell’s equations in free space lead to electro-
magnetic field solutions of the form E(x, y, z) exp(ickt)
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Figure 2: Beam matrix rejection fraction vs. relative beam
size measurement error level for the 4d ILC emittance mea-
surement section with 6 scanners [1].
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Figure 3: Distribution of reconstructed vertical emittance
with 1% (a) and 5% (b) random errors on the beam size
measurement for a 4d diagnostics section (statistics corre-
sponding to train length). Initial optical functions are per-
fectly matched. The true emittance is 0.079 µm · µrad [1].



where:

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

)

E(x, y, z) = 0 (3)

A pure plane wave travelling in the x-direction has
the exact solution E(x, y, z) = E0 exp(ikx) but, due to
diffraction effects, this is not in general sufficient to de-
scribe a laser beam of finite transverse size. Assuming a
solution of the form E(x, y, z) = u(x, y, z) exp(−ikx) in
Eq. 3 gives:

(

∂2

∂z2
+

∂2

∂y2
+

∂2

∂x2
− 2ik

∂

∂x

)

u(x, y, z) = 0 (4)

In most practical situations, any variations along the
beam (i.e. along x) will be gradual, which enables the
∂2u/∂x2 term to be ignored. As explained in Ref. [12],
this so-called paraxial approximation is valid provided any
rays within the beam are traveling at angles less than about
0.5 radians with respect to the optical axis, which is true for
all the practical cases described later. The paraxial wave
equation is then:

∂u(x, y, z)

∂x
= − i

2k

(

∂2

∂z2
+

∂2

∂y2

)

u(x, y, z) (5)

The TM00 Mode
Consider a Gaussian beam with an intensity (which is

proportional to the square of the field strength) profile of
the form:

I(x, y, z) = |u(x, y, z)|2 =
I0

2πσ2(x)
exp

(

−y2 + z2

2σ2(x)

)

(6)
where I0 is the (constant) total power of the beam and the
first factor of σ(x)−2 is the normalisation necessary to keep
the total power constant as a function of x. For the simplest
laser mode (TM00) there is no azimuthal dependence and
so the problem can be formulated using r =

√

y2 + z2 and
solving:

2ik
∂u

∂x
=

∂2u

∂r2
+

1

r

∂u

∂r
(7)

in the form

u(x, r) =

√

I0

2π

1

σ(x)
exp

(

− r2

4σ2(x)

)

eiφ(x,r) (8)

Substituting Eq. 8 into Eq. 7, and solving, yields:

σ(x) = σ0

[

1 +

(

x

xR

)2
]

1

2

(9)

Figure 4: The key features of the focussing of a Gaussian
beam through a circular aperture of diameter D and focul
length f . The beam has its waist at a distance ' f from the
lens, at which point its intensity distribution has Gaussian
rms σ0; this point also defines x = 0. The curvature of the
wavefronts R(x) varies as fuction of distance x from the
waist, and is infinite at x = 0 and x = ∞. At large dis-
tances from its waist the beam diverges linearly with dis-
tance σ = x tan θ0, where tan θ0 = σ(−f)/f .

where xR, the so-called Rayleigh range, is given by

xR =
4πσ2

0

λ
, (10)

λ is the laser wavelength and

φ(x, r) = tan−1

(

x

xR

)

− 2π

λ
r2 σ′(x)

σ(x)
. (11)

The first term of Eq. 11 shows that there is a phase shift
of π (the Guoy phase shift) on passing through the focus,
defined as where σ(x) is a minimum; this point also defines
x = 0. The second term of Eq. 11 is intepreted as due to the
curvature of the wavefront, which can be written in terms
of a radius of curvature R(x) given by:

R(x) = x +
x2

R

x
. (12)

This interpretation of the solution in terms of Gaussian-
spherical waves is illustrated in Fig. 4; a more general treat-
ment of this interpretation is given in Ref. [12].

When x is large compared to xR, the beam diverges lin-
early:

σ(−f) ' σ0

xR
f =

λf

4πσ0
(13)

and
θ0 = tan−1

(

σ(−f)

f

)

' λ

4πσ0
(14)

The usual practical convention [12] is to require 99% of
energy in the Gaussian beam profile to be contained within



the lens aperture, here assumed to be circular with diameter
D. For the TM00 mode this requirement means:

0.99 =

∫ D/2

0

∫ 2π

0

rdrdφ
1

2πσ(−f)2
exp

[

− r2

2σ(−f)2

]

(15)
so D ' 2 × πσ(−f) and by substituting this into Eq. 13

D ' 2π
λf

4πσ0
(16)

σ0 = 0.5λf# . (17)
where the f-number is defined by f# = f/D. In this case,
the opening angle θ = 1/f# between the centre of the di-
verging Gaussian beam and its e−2 intensity cone is given
by:

θ =
λ

πσ
=

1

f#

and so, for TM00 with f1 optics, σ0 = λ/π and θ = 1
rad, or 57◦. Thus, for f# > 1, the maximum angle of
divergence of any ray in the beam is of order 0.5 rad, so the
paraxial approximation is valid.

In practice, the laser beam must be transported over large
distances involving many optical components and signifi-
cant alignment challenges; so the practical final aperture D
may be smaller than the nominal aperture of the final focus
lens. For this reason it is safer to assume a more conserva-
tive final practical beam spot size σ` = kpσ0 where kp in-
cludes all the practical aspects of laser transport and align-
ment. In Ref. [1], and in the following analysis, kp ' 2 is
taken as a conservative estimate. So from now on the laser
rms intensity at the waist, σ`, is given by the conservative
estimate:

σ` ' λf# (18)
The literature of laser optics contains several definitions

of “laser spot size”. It is common to find the beam size
defined in terms of the diameter of the beam, where the ra-
dius of the beam is defined by the point x = w at which
the beam intensity is 1/e2 of its maximium value. In the
above notation, this occurs at x = 2σ. To compare nota-
tion, w = 2σ and the “laser spot size” is then 2w, or 4σ.
In the following, everything will be evaluated using σ but
care is needed when comparing with formulae in other ref-
erences.

Higher Order Laser Transverse Modes
In practice, the laser will not produce a pure TM00 mode

but will also include higher order transverse modes. To il-
lustrate the impact of such modes on the beam propagation
issues, consider the TM01 mode where the condition that
99% of the light energy is contained within the lens aper-
ture becomes:

0.99 =

∫ D`/2

0

∫ 2π

0

rdrdφ
1

2πσ2
`

(

r

σ`

)2

sin2 φ exp

[

− r2

2σ2
`

]

(19)

which gives

0.01 =

(

1 +
D2

`

8σ2
`

)

exp

[

− D2
`

8σ2
`

]

(20)

and hence D` ' 1.15 × 2πσ`. So this means that the ef-
fective size of the beam is increased if TM01 modes are
present. The same will be true for even higher order modes
and their combined effect is included in a practical M 2

value for the laser, where M 2 ≥ 1, with M2 = 1 corre-
sponding to a perfect laser.

The formulae outlined above for Gaussian laser optics
are very similar to those used in accelerator physics, which
describe a charged particle beam using a β-function and
and emittance ε. The β-function is defined by the machine
optical systems, such that the beam profile at any point is
given by

σx =
√

εβ (21)
σx′ =

√

ε/β (22)
σxσx′ = ε (23)

where σx′ is the rms of the angular distribution. So, while
the local profile of the beam depends on the β-function, the
product σxσx′ at any location is invariant.

Comparing this with the formulae derived above for
a perfect TM00 Gaussian laser beam; using Eq. 14 the
corrsponding invariant is given by

σxσx′ = σ0θ0 =
λ

4π
(24)

The effects of higher-order transverse modes are then
taken into account by increasing the “emittance” of the
laser beam to:

σxσx′ = M2 λ

4π
(25)

If no re-tuning of the optical system is performed, then
the effect of increasing M 2 is to increase both the local spot
size and the angular divergence by a factor M , as shown in
Fig. 5.

However, in practice, the laser spot size will be tuned
to fill the aperture of the final focus lens. If the laser M 2

is then increased, the laser beam would clip the aperture
and so the input beam will need to be re-tuned to reduce
the size of the beam incicent on the lens by a factor M ;
this will consequently further increase by a factor M the
spot size at the waist downstream of the lens. As a result
the spot-size at the waist will have increased by a factor of
M2, as shown in Fig. 6.

In the following, the conventions used define y along
vertical and x along the laser-beam direction. Including
all the effects of M2 and practicalities of light transport,
the relevant formulae for Gaussian beam propogation are
then modified as follows.



Figure 5: Effect of M2 > 1 on a LW final focus system
initially set up to be optimised for M 2 = 1. In the un-
constrained case, both the local angular divergence of the
beam and its transverse spot dimension are increased by a
factor of M .

Figure 6: Effect of rematching upstream optics for a beam
with M2 > 1 so as to maintain an optimised use of the
final focus aperture. The final divergence of the lens must
be reduced, by retuning the upstream laser optics, such that
the beam is contained within the final focus aperture. This
means that the transverse spot size at the waist must be
further increased by a factor of M . Thus overal, the laser
spot size at the waist is M2σ0.

The light intensity of the laser has the form

I`(x, y, z) =
I0

2πσ2
`

1

fR(x)
exp

[

− y2 + z2

2σ2
` fR(x)

]

(26)

fR(x) = 1 +

(

x

xR

)2

(27)

σ` = M2kpσ0 (28)

where σ0 = 0.5λf# and, conservatively, kp ' 2.

xR = M2 4πσ2
0

λ
(29)

Figure 7: Principle of operation of the laser-wire scanner
with the key dimensions labeled. The figure shows the laser
configured to scan the horizontal x-profile of the electron
bunch σex. xR is the “Rayleigh range” of the laser beam
as defined in Eq. 29; it gives the distance between the focus
and the point where the laser spot-size has diverged to

√
2

of its minimum value.

LASER-WIRE
Traditionally the transverse dimensions of an electron

beam have been measured by scanning a tungsten or car-
bon wire across the beam and measuring the resulting back-
grounds as a function of relative position of the wire. This
method has the disadvantage of being highly disruptive to
the electron beam and so it cannot be used during normal
luminosity running. At the ILC, the electron beams in the
BDS will have vertical transverse size of order 1-few µm;
a normal wire scanner would not be able to measure beams
of this size, nor would it be able to withstand the energy de-
positions from such high intensities. To solve these issues,
the solid wire can be replaced by a finely-focused beam of
laser light; such a system is called a laser-wire (LW).

Principle of Operation
The Compton collisions between laser photons and beam

electrons are detected downstream and the Compton rate as
a function of relative positions of electron and laser beams
provides the measurement of the electron beam transverse
profile. This principle is illustrated in Fig. 7, with a
schematic experimental arrangement shown in Fig. 8. Two
distinct methods have been employed to date. Operating
the laser in continuous wave mode together with an optical
cavity to enhance the power has been used [8] at the ATF at
the KEK laboratory to measure the emittance of the damp-
ing ring; this technique would also be applicable to the ILC
damping rings. In other parts of the machine, including the
BDS, the beam is not circulating so a single-pass method
based on high power pulsed lasers is required [9, 10, 11].

The Compton cross section decreases as the electron
beam energy increases. For an electron beam energy Eb

and laser photon energy k = hc
λ , the Compton cross sec-
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Figure 8: Schematic of a practical LW system.

Table 3: Values of f(ω) for various laser wavelengths λ
and ILC beam energies

λ(nm)
Eb(GeV) 1064 532 355 266

5 0.96 0.92 0.89 0.86
50 0.72 0.59 0.51 0.45

150 0.51 0.38 0.31 0.27
250 0.41 0.30 0.24 0.20
500 0.30 0.20 0.16 0.13

tion is given by σC(ω) = σT f(ω) where σT is the Thom-
son cross section = 0.665× 10−28m2, ω = kEb

m2
e

, and f(ω)

gives the ratio of Compton to the Thomson cross section.
Values of f(ω) for laser wavelengths and beam energies of
typical interest at the ILC [1] are presented in Table 3.

In this section, the Compton rate for a set of laser-wire
operating conditions is derived as a function of relative hor-
izontal and vertical offsets, ∆x and ∆y respectively, be-
tween the centroids of the electron bunch and laser beam.

The number N(∆x, ∆y) of Compton photons pro-
duced will be proportional to the relevant overlap integral,
ε(∆x, ∆y). In Sec. , ε(∆x, ∆y) will be evaluated in µm−1.

N(∆x, ∆y) = N0ε(∆x, ∆y)

where
N0 =

P`Neλf(ω)σT

hc2
, (30)

P` is the instantaneous laser power at the laser-electron IP,
and Ne is the number of electrons in the bunch. If ηdet

is the detector efficiency then, using realistic numerical
values, the number of detected photons is Ndetε(∆x, ∆y),
where

Ndet = 1212× ξ (31)
and

ξ =
ηdet

0.05

P`

10 MW

Ne

2 × 1010

λ

532 nm

f(ω)

0.2
µm . (32)

Laser-Wire Overlap Integral
In the following, the electron beam is assumed to have

a simple Gaussian charge profile, with σex and σey being
the horizontal and vertical electron spot-sizes respectively.
σz is assumed long compared to the laser spot-size, so the
overlap integral in z integrates out trivially.

Scans Using the Laser TM00 Mode
The full overlap integral of a TM00 laser mode with a

Gaussian electron bunch is now presented, including full
effects of Rayleigh range. For the laser TM00 mode, per-
forming the z- and y-integrals gives [1]

I`Ie

2πσex

∫

∞

−∞

dx

σs(x, ∆x)
exp

[

− x2

2σ2
ex

−
∆2

y

2σs(x, ∆x)2

]

(33)
where

σs(x, ∆x) =
√

σ2
ey + σ2

` fR(x − ∆x) . (34)

In the approximation of an infinite Rayleigh range the
equations reduce to the more familiar form with [4]

σm =
√

σ2
e + σ2

` (35)

and

ε(∆y) =
1√

2πσm

exp− (∆y)2

2σ2
m

. (36)

Similar additional formulae are provided in Ref [1] for
laser-wire scans using the TM01 mode.

Results for the case of laser-M 2=1.3 and f1 final focus
optics are shown in Fig. 9 for an electron bunch transverse
Gaussian profiles with (a) σey = 1 µm, σex = 10 µm
and (b) σey = 1 µm, σex = 100 µm; the effect of the
Rayleigh-range is very apparent for the larger aspect-ratio.

Some recent experimental results obtained from the LW
at the ATF extraction line are shown in Fig. 10, including a
fit to function of the form of Eq 33. The detailed parameter
extraction at the ATF is currently being analysed, however
it is clear that the shape of the data is not pure Gaussian,
and that the fit including Rayleigh range effects describes
the data well.

Contributions to the Errors of a Laser-wire Mea-
surement

A laser-wire scan will yield a measurement of the rate of
Compton events as a function of position of the laser beam;
this transverse scan size, σm, will be a convolution of ma-
chine related-effects and laser-related ones. The machine-
related effects include bunch-to-bunch position jitter and
residual dispersion at the laser-wire interaction point (IP)
and are discussed in detail in Ref. [1]. The laser-related ef-
fects include laser pointing jitter, intensity (normalisation)
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Figure 9: Scan profile at the laser-wire IP for a laser with
M2=1.3 and wavelength 532 nm operating in the TM00

mode and focused using f1 optics. The electron bunch is
assumed to have a Gaussian transverse profile. (a): σey =
1 µm, σex = 10 µm. (b): σey = 1 µm, σex = 100 µm
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Figure 10: Example scan from a laser-wire scan at the ATF
extraction line. The non-Gaussian tails are clearly visible,
which are well fit by including Rayleigh range effects, as
given by Eq. 33

Figure 11: Streak camera shot of a Q-switched laser. The
temporal structure is due to longitudinal mode beating
which, if the electron bunch lengths are less than or of or-
der 50 ps, will have a serious impact on the effective rate
at which a LW scan can be performed.

fluctuations, and systematic errors associated with the un-
certainty in the measurment of the light distribution at the
IP, as discussed below.

Laser intensity fluctuations can be measured shot-by-
shot using a fast photodiode; this works well for mode-
locked systems, or for injection-seeded Q-switched ones.
However, care must be taken with using unseeded Q-
switched lasers because the presence of multiple longitu-
dinal modes gives rise to a beating structure such as shown
in Fig. 11, which is a streak-camera measurement of a Q-
switched laser used in an early LW system at PETRAII.
The PETRA bunch length is of order 50 ps, so shot by
shot fluctuations of 100% are possible; this effect means
that an average over several laser shots is required at each
scan point. A later version of this system [10] used an in-
jection seeded system, which enabled faster scan rates, as
described below.

In the following a laser-wire scan is taken to consist of
Nscan equally spaced values of y-displacements, ∆y, of the
laser with respect to the central value over a range ±7σm

(as defined in Eq. 35). The results presented here were ob-
tained using Nscan = 19, however the statistical errors can
be scaled in the usual way for other values. The contri-
butions to the raw laser-wire scan can be broken down as
follows:

(

δσfit

σfit

)2

=
19

Nscan

(

Estat√
ξ

+ Eξ

)2

+ E2
M2 (37)

where Estat is the relative statistical error of a 19-point fit
to the raw scan curve, ξ is the event rate normalisation as
defined in Eq.32, and Eξ is the relative error arising from
the shot-by-shot normalisation fluctuations.

EM2 is the relative error on the extraction of σe intro-
duced by any uncertainty in the laser light distribution at
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Figure 12: (a): Statistical error Estat, (b): laser error
EM2 for ξ = 1 (Eq. 32) using Nscan = 19 scan points
versus the f -number of the final focus lens, using a laser
with M2=1.3 and operating in the TM00 mode with λ =
532 nm. The electron bunch is assumed to have a Gaus-
sian transverse profile with σey = 1 µm and σex = 25 µm.

the IP; this is characterized here by an error in the M 2

value of the laser and, for a real system, will need to be cal-
culated including the effects of alignment errors etc. in the
final-focus optics. Absolute M 2 measurements can be per-
formed by slicing the laser-beam with a knife-edge at a set
of longitudinal locations with respect to a laser-waist [17]
and can be monitored relatively by capturing an image of
the waist with a CCD camera.

EM2 can be estimated by fitting the measured profile to
σey assuming a value of M 2 that is wrong by a factor (1 +
δM2). In the following, the laser M 2 is thus assumed to be
determined shot by shot to an accuracy of δM2 . Naively,
without allowing for Rayleigh range effects, the error on
the extracted value of σe from subtraction of the laser spot-
size is

δσe

σe
=

σ`

σ2
e

δσe '
(

λf#

σe

)2

M2δM2 (38)

Inserting representative values of M 2 = 1.3 and σe =
1 µm gives:

δσe

σe
= 1.08

[(

M2

1.3

) (

1 µm

σ

) (

λ

532 nm

) (

f#

1.5

)]2

δM2 .

(39)
A full numerical treatment [1] shows that this is a good
approximation for small δM2 ' 1% but is a slight underes-
timate for larger values.

The overlap integral Eq. 33 is now used to fit to a sim-

ulated laser-wire scan of interest to the ILC and thereby
determine the laser-related errors on the extracted value of
the electron vertical spot size σey . Both Estat and EM2

will depend on the f -number of the laser optics employed.
This dependence is illustrated in Fig. 12 for the case of
σey = 1 µm and σex = 25 µm. For each set of σex, σey,
there is an optimal f -number that gives the lowest statis-
tical error for given values of ξ and Nscan. However, as
can be seen in Fig. 12, the minima are often fairly shallow,
which must be contrasted with the difficulty of building low
f -number optics. The difficulty is not just in building low
f -number alone, but in producing a system that can main-
tain a small laser spot size approximately ±10 σ` off axis,
as needed during a scan. For these reasons, f-numbers of
order 1.5 are likely to be optimal for ILC applications.

For larger spot-sizes and for the horizontal scans of the
ILC electron bunch, the suitable f -number is determined
primarily by the angular scan-range of the final focus lens
plus scanning system. The laser optics for these dimen-
sions will probably use diameter D = 5 cm optics (or sim-
ilar). In this case, assuming again a scan range of 7σm the
practical f# is given by

f# = 1.4

(

σm

10 µm

) (

5 cm

D

) (

1 mrad

θmax
scan

)

. (40)

In practice, for very large scan ranges, it may be prefer-
able to use a stepping-motor system to move the final focus
lens as opposed to scanning using optical ray deflection,
which would enable smaller f#s to be employed. In that
case, the scan would have to be very slow compared to the
machine repetition rate. An additional consideration here
is that the rate of Compton events is significantly lower for
horizontal scans, due to the 1/σm factor in Eq. 36.

EXPERIMENTAL LW FACILITIES

Laser-wire at the PETRA Accelerator

A laser-wire system that can scan in both the horizon-
tal and vertical directions was installed and operated [10]
at the PETRAII accelerator. A schematic of this system
is given in Fig. 13, which shows the stages used to find
the beam and perform coarse scans using stepping mo-
tors. Faster, fine-grained, scanning was performed using
mirrors attached to a piezo stack. Combined with the
use of an inection-seeded Nd:YAG laser with wavelength
λ=532 nm, high quality scans could be performed in about
50 s, this rate being limited by the repetition rate of the lase
(20 Hz). Using both the horizontal and vertical scanning
capability, the transverse beam profile was measured to be
46.5 ± 0.6 µm in the vertical and 373 ± 3 µm in the hori-
zontal, where several single scans were used to obtain these
measurements by fitting to the Rayleigh range formula of
Eq. 29.



Figure 13: Practical layout of a laser-wire system that can
scan in both the horizontal and vertical dimensions. Such
a system has operated at PETRAII [10]

Laser-wire at H− Accelerators

Laser-wires are also being used within H− accelerators
to measure the beam emittance [13]. They employ the
photo dissociation technique, which is to ionize the H−

ions using lasers, which is possible because the threshold
for this process is only about 0.75 eV and a Nd:YAG laser
can thus be used as an effective light source. The laser light
ionizes the H− thus producing a free electron and a neutral
H-atom. Both the electrons and the atoms can be used to
determine detect the signal; the various components of the
beam (H0, H− and e−) are separated by a magnetic field
and the electrons can then be detected in a Faraday cup to
provide a fast signal that can also be used for a time-of-
flight measurement in order to determine the longitudinal
emittance of the electron bunch. The neutral atoms can be
imaged by using a scintillation screen plus fast CCD cam-
era [14]. The use of lasers in stripping the H− ions to form
an efficient source of protons is also being explored [15].

ALTERNATIVE MODES

Increased sensitivity to the electron spot-size can be ob-
tained by using more sophisticated light distributions than
the simple TM00 mode described above. Higher order
laser-modes are one way to do this, another way is to cre-
ate a laser interference pattern and scan the electron beam
across the fringes; these methods are now discussed briefly.

-30 -20 -10 0 10 20 300

50

100

150

200

250

300

 m)µ (y∆

Nu
m

be
r o

f d
et

ec
te

d 
Co

m
pt

on
s

Figure 14: Scan profile at the laser-wire IP for a laser with
M2=1.3 and wavelength 532 nm operating in the TM01

mode and focused using f1 optics. The electron bunch is
assumed to have a Gaussian profile of σey = 5 µm, σex =
50 µm

TM01 laser mode
The case of operating the laser in TM01 mode with laser-

M2=1.3 and f1 final focus optics are shown in Fig. 14 for
an electron bunch transverse Gaussian profile with σey =
5 µm, σex = 50 µm; the benefit of the TM01 mode over
similar scans using the TM00 mode (Fig. 9) is apparent due
to the steeper variations of the signal as a function of ∆y.
The relative benefits of the TM00 and TM01 modes are dis-
cussed in Ref [1] , where it is shown that for σey > 1−2 µm
there is a significant advantage for the statistical power by
using the TM01 mode; this advantage has been demon-
strated at the ATF [16]. However the sensitivity to the laser
properties (as parameterized by a simple M 2 in these cal-
culations) is greater for the TM01 mode and, for spot-sizes
of order 1 µm, the relative statistical power of the TM01

to that of the TM00 mode decreases rapidly. The relative
advantage of using higher order laser modes thus depends
on where the system is located; laser-spot sizes of order
1 µm are of particular importance for the BDS LW system
so the TM00 mode is more appropriate, whereas higher-
order laser modes may be advantageous in other locations
of the machine.

Interferometric Beam Size Monitor
The LW method of scanning across an electron bunch

works well for electron bunch sizes greater than (or similar
to) the wavelength of the light used (typically 0.5µm). For
smaller electron bunches, an alternative technique has been
demonstrated [4, 18], where a laser-beam is split into two
and then the daughter beams superposed at a relative angle
θ as shown in Fig 15. This sets up an interference pattern
of the form [4]:

I(y) = I0 [1 + cos θ cos (2kyy)] (41)



Figure 15: Principle of an interferometric beam size moni-
tor (“Shintake monitor”). The laser-beams are superposed
at a relative total angle θ and the convolution of the result-
ing intensity fringes with a Gaussian electron bunch gives a
number of Compton photons that varies as a function of rel-
ative position y between the fringes and the bunch. A mea-
surement of the electron bunch size can be inferred from the
magnitude of this signal variation, given by Eq. 42.

where ky = 2π sin(θ/2)/λ. This treatment applies only
within that part of the region of overlap where a plane-
wave approximation to Eq. 8 is valid (i.e. well within the
Rayleigh range). If a Gaussian electron beam with rms size
σey is then incident on the region of overlap, the number
of Compton photons Nγ is given by its convolution with
Eq. 41:

Nγ =
N0

2

(

1 + cos
(

2kyy) cos θ exp
[

−2(kyσey)2
]))

(42)
This system, now frequently referred to as a “Shintake

monitor”, was employed [18] at the Final Focus Test Beam
at SLAC, where the modulation of the Compton photon
signal as a function of electron beam position determined
the electron vertical spot size to be 73 nm. This system has
since been transported to the ATF2 experiment [19] where
it will be used to measure electron spot-sizes down to about
35 nm. In principle, through the use of shorter wavelength
light, measurements of spot-sizes down to about 10 nm
may eventually be possible using this technique, although
this will require additional R&D both on the laser systems
themselves and on the control of vibrations and jitter.

SUMMARY

Lasers are important elements of advanced beam di-
agnostics systems for transverse bunch profile measure-
ments, with uses in both electron and proton machines. The
main elements of such systems were described, including
a derivation of the key formulae. A brief overview of ex-
isiting laser-based systems was provided, with references
to more detailed discussions in the literature.
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